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Abstract: Assuming that two incoming annihilating particles interact by exchanging a
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limit of the field theory ladder diagrams, that the complete annihilation amplitude A is

equal to: the convolution of a solution of the Schroedinger equation (including the attractive

potential) with the Fourier transform of the bare (i.e. ignoring the attraction) annihilation

amplitude A0. The main novelty is that A0 can be completely arbitrary. For a Coulomb

potential we find analytically the enhancement for the l-partial-wave cross-section, e.g. the

P wave enhancement 2π(α/v)3 (v relative velocity), for a Yukawa potential we describe a

simple algorithm and give numerical results showing an important P wave enhancement

with a resonant pattern.
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1 Summary and results

Here we discuss general results for the Sommerfeld enhancement, which could be an im-

portant ingredient for the interpretation of astrophysical data to signal dark matter anni-

hilation processes [1–8].

We assume that two incoming particles attract each other by exchanging repeatedly a

massive vector boson, before undergoing some annihilation reaction. We will be interested

in the non-relativistic limit of this process: in this limit the exchange of a scalar boson would

give the same result, although to be definite we will continue to refer to a vector boson.

Also, in general one has to consider a non-abelian process, corresponding to a matrix-

valued interaction. In the analysis below we assume that that the matrix can be diagonal-

ized and that there is a boson of definite mass mediating the attraction for the relevant

eigenstates of the two particles. We consider therefore such a definite eigenstate.

Let ~p be the CM momentum of the incoming particles and m their mass. We call

A0(~p) the bare (i.e. neglecting the vector field attraction) annihilation amplitude and A(~p)

the complete (including the effect of the attraction) amplitude.

Our general result is a generalization of the enhancement formula of ref. [1]. Our

treatment focuses on the relation between A(~p) and A0(~p) for a totally generic A0(~p),

rather than taking for instance a constant A0 (i.e. its Fourier transform ∼ δ(r)). This

allows us in particular to consider the specific case of partial waves higher than S.
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Our method is also similar to the one of ref. [1], even if the path we follow is not

quite the same. In a sense it is more direct, since for simplicity we focus on the essential

points, leaving off the details of the dark matter properties that are not relevant for our

generic discussion.

We begin by writing an integral equation for A(~p), whose iterative solution corresponds

to the sum of the ladder diagrams in which the incoming particles repeadly exchange

vector bosons before annihilating. Then we take the non-relativistic limit finding an in-

homogeneous Schroedinger equation relating the Fourier transform of A(~p) to the Fourier

transform of A0(~p). The solution of this equation gives:

A(~p) =

∫

d~rφ∗
~p(~r)

∫

d~q

(2π)3
ei~q·~rA0(~q) (1.1)

where φ~p, normalized as
∫

d~rφ∗
~p(~r)φ~k

(~r) = (2π)3δ(~p − ~k), solves the Schroedinger equation

(

−
1

2mr
∂2 −

αe−µr

r
−

p2

2mr

)

φ~p(~r) = 0 (1.2)

mr = m/2 is the reduced mass, µ the vector potential mass and α = g2/(4π) its strength.

This formula for the complete amplitude A can be numerically evaluated once the

dependence in ~p of A0(~p) is known.

Furthermore, we consider the case in which the annihilation occurs at a definite partial

wave l and therefore assuming that for p small A0 ∼ pl, i.e. the typical dependence on p of

the l partial wave.

We define the enhancement enhl as the factor that multiplies the bare cross-section

σ0,l to give the complete one σl (for the rate it would be the same):

σl = enhl · σ0,l (1.3)

We find that enhl depends, beside l, on the two dimensionless parameters:

a :=
α

v
, b :=

µ

mrv
(1.4)

where mr = m/2 and v is the relative CM velocity.

Analytical computations are possible in the case in which µ is negligible. We find for

the generic l partial wave:

enhl =

l
∏

s=1

(s2 + a2)eπa πa

sinh(πa) l!2
(1.5)

In particular,in the limit a ≫ 1, for the S wave we find the standard Sommerfeld en-

hancement 2π α
v , [1–3, 5, 6, 9], whereas for the P (l = 1) wave we find the enhancement

2π(α
v )3.

In the general case of a Yukawa potential, we derive a formula expressing enhl in terms

of the asymptotic behavior of the partial wave solution of the homogeneous Schroedinger

– 2 –
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equation, and we indicate a very easily implementable algorithm to evaluate it numerically,

which does not require any computational skill.

The case of the S l = 0 wave has been discussed at length in the literature, and it has

been found a resonant pattern see in particular refs. [6] and [8].

Here we present some numerical results for the P l = 1 wave, which also shows reso-

nances. In this case the enhancement can be of several orders of magnitude also away from

the resonance, and much more on it.

2 Derivation of the results

2.1 The equation for the amplitude

Define A(p, p′;P0) to be the amplitude for the annihilation process of two χ particles

χ(p1) + χ̄(p2) → a(p′1) + ā(p′2)

The final state a, ā can be any (quantum-number compatible) two particle state of the

standard model.

Define P = p1+p2

2 =
p′
1
+p′

2

2 , p = p1−p2

2 , p′ =
p′
1
−p′

2

2 . In the CM P0 =
√

p2 + m2, ~P =

0, p0 = 0.

A(p, p′;P0) is the complete amplitude, including the Sommerfeld effect, and we call

A0(p, p′;P0) the ”bare” amplitude, that is neglecting the Sommerfeld effect. The variable

p′ does not play any role in the following, we continue to indicate it just for completeness.

Here we treat the initial particles χ having a mass m as Dirac particles of opposite

charge, to be definite, and imagine that before annihilating they attract each other by the

exchange of a vector boson called VB (the exchange of a scalar would give the same non-

relativistic potential). We take the general case of the VB with mass µ ≪ m. In the results

one can put µ = 0. In the non-relativistic limit, any kind of χ particle, Dirac, Majorana

or even scalar, would give the same result. As said, in the case of non-abelian interaction,

we assume that it has been diagonalized.

Here we follow closely the Chapter 10 of the book ”Quantum Field Theory” by

C.Itzykson and J.B.Zuber [10].

Since there are two fermions in the initial state we distinguish the Dirac matrices acting

on the two particles by a suffix, say γ1, γ2 act on particle 1 and 2 respectively.

The VB exhange between the two incoming particles gives a factor (vertex-

propagator-vertex)

γ0
1γ0

2 − ~γ1 · ~γ2

k2 − µ2
= −

γ0
1γ0

2

~k2 + µ2
+

(

γ0
1γ0

2k2
0

(k2 − µ2)(~k2 + µ2)
−

~γ1 · ~γ2

k2 − µ2

)

where k = p−p′. The first term in the r.h.s. is the instantaneous ”Coulomb like” interaction

and it will treated non-perturbatively, whereas the second term, containing the retarded

and magnetic effects can eventually be included as a perturbation [10] and it will be ignored

in the following discussion.

– 3 –
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Also, we will include only the ladder diagrams, that is the iteration of the one VB

exchange [10].

The reason for it is that the complete amplitude A(p, p′;P0) will be determined, in the

relevant non-relativistic approximation, by the non-perturbative solution of a Schroedinger

equation with a potential to be determined by the field theory diagrams. A usual strategy

for solving the Schroedinger equation is, whenever possible, to split the potential into a

dominant part which can be exactly solved, plus higher order terms giving corrections to

be computed, if necessary, by perturbation theory, like it is done for the fine and hyperfine

corrections to the energy levels of the hydrogen atom.

In our case the general diagrammatic expansion of the amplitude can be seen as the

iteration of two-particle irreducible sub-diagrams and the non-relativistic potential cor-

responds to the sum of those two-particle irreducible diagrams. The dominant term of

the potential, for which we will provide the exact solution, comes from the lowest order

two-particle irreducible diagram, that is the one VB exchange.

In the general expansion it appears also the iteration of other two-particle irreducible

sub-diagrams, including radiative corrections and sub-diagrams in which the VB lines cross;

as said, they correspond to additional contributions to the interaction, which are of higher

order in the coupling constant, i.e. higher than the one-VB potential, and their effect , if

necessary, can be computed by perturbation theory. This is similar to the treatment of the

positronium in ref. [10], in which the Bethe-Salpeter equation in the ladder approximation

provides the leading non-perturbative solution, with perturbative corrections coming from

higher order diagrams.

Further, we also note that the crossed diagrams are less singular for k2 ∼ O(µ2) than

the one-VB exchange; since the range of the interaction is determined by the strength

of the nearby singularity, they will correspond to an interaction which is less effective in

attracting the incoming particles at large distances, beside giving a small correction to the

exact solution solution of the one-VB potential, because they represent higher orders in

the interaction.

That being said, A satisfies the following integral equation (p̂ ≡ γµpµ):

A(p̃, p′;P0) = A0(p̃, p′;P0) − (2.1)

−ig2

∫

d3qdq0

(2π)4
γ0
1γ0

2

(~̃p − ~q)2 + µ2

(P̂ + q̂ + m)1
(P + q)2 − m2 + iǫ

(P̂ − q̂ + m)2
(P − q)2 − m2 + iǫ

A(q, p′;P0)

Its iterative solution corresponds to the sum of the ladder diagrams in which the incoming

particles repeadly exchange VB’s before annihilating. After solving the equation one has

to put p̃ = p, that is p̃0 = p0 = 0, ~̃p = ~p.

We evaluate the integration over q0 by closing the contour in the complex plane disre-

garding the possible singularities of A which give sub-leading terms in the non-relativistic

limit (see appendix A). In the following v := |~v| denotes the modulus of a 3-vector.

The poles in the lower plane are located at: q0 = ω − P0 − iǫ, q0 = ω + P0 − iǫ with

– 4 –
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ω =
√

q2 + m2. We write [10]

(P̂ + q̂ + m)1
(P + q)2 − m2 + iǫ

(P̂ − q̂ + m)2
(P − q)2 − m2 + iǫ

= (2.2)

(

Λ+
1 (~q)

q0 + P0 − ω + iǫ
+

Λ−
1 (~q)

q0 + P0 + ω − iǫ

)

γ0
1

(

−Λ−
2 (−~q)

q0 − P0 − ω + iǫ
+

−Λ+
2 (−~q)

q0 − P0 + ω − iǫ

)

γ0
2

where Λ± = ω±H
2ω and H = ~α · ~q + βm with β = γ0, α = βγ.

The residue at q0 = ω − P0 is

Λ+
1 (~q)

(

Λ−
2 (−~q)

2P0
−

Λ+
2 (−~q)

2(ω − P0)

)

γ0
1γ0

2 → −
Λ+

1 (~q)Λ+
2 (−~q)

2(ω − P0)
γ0
1γ0

2 (2.3)

here we take the leading term in the non-relativistic limit, that is the term containing at

the denominator ω − P0 =
√

q2 + m2 −
√

p2 + m2 (small for m → ∞).

The residue at q0 = ω + P0 is
(

Λ+
1 (~q)

2P0
+

Λ−
1 (~q)

2(ω + P0)

)

(−Λ−
2 (−~q))γ0

1γ0
2 (2.4)

here there is no small denominator, and we neglect it as a sub-leading term.

In the non-relativistic limit γ0 ∼ 1 and Λ+
1 (~q)Λ+

2 (−~q) ∼ 1 (leading term for m → ∞).

Futher, in the nonrelativistic limit, A(ω − P0, ~q, p
′;P0) ∼ A(0, ~q, p′;P0). Therefore we can

consistently put directly p̃0 = 0 and consider the equation for A(~̃p, p′;P0) ≡ A(0, ~̃p, p′;P0).

In conclusion, in the non-relativistic approximation we get

A(~̃p, p′;P0) = A0(~̃p, p′;P0) +
g2

(2π)3

∫

d3q

(~̃p − ~q)2 + µ2

A(~q, p′;P0)

2(ω − P0)
(2.5)

In the denominator ω − P0 we take the leading term for m large compared to the

three-momentum:
1

2(ω − P0)
→

1
q2

2mr
− E

(2.6)

where E = 2(P 2
0 − m2)/(2m) = p2/(2mr) is the total non-relativistic energy (mr = m/2 is

the reduced mass).

The final step is a further redefinition:

A(~̃p, p′;P0) =

(

p̃2

2mr
− E

)

Ψ̃E(~̃p, p′) (2.7)

getting the non-relativistic equation
(

p̃2

2mr
− E

)

Ψ̃E(~̃p, p′) = A0(~̃p, p′;P0) +
g2

(2π)3

∫

d3q

(~̃p − ~q)2 + µ2
Ψ̃E(~q, p′) (2.8)

Since 1
k2+µ2 = 1

4π

∫

d~r e−i~k·~r−µr

r , defining α := g2/(4π) and

ΨE(~r) :=

∫

d~̃pei~̃p·~rΨ̃E(~̃p, p′), U0(~r) :=

∫

d~̃pei~̃p·~rÃ0(~̃p, p′, P0) (2.9)

we get the in-homogenous equation:
(

−
1

2mr
∂2 −

αe−µr

r
− E

)

ΨE(~r) = U0(~r) (2.10)

– 5 –
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2.2 Solution of the equation

Eq. (2.10) is formally solved by

ΨE(~r) =

∫

d~r′
∫

d~k

(2π)3

φ~k
(~r)φ∗

~k
(~r′)

k2

2mr
− E − iǫ

U0(~r
′) (2.11)

(we choose the Feynmann contour prescription: ~k2 → ~k2 − iǫ, for our purpose +iǫ would

give the same) where φ~k
(~r) are a complete set of solution of

(

−
1

2mr
∂2 −

αe−µr

r
−

k2

2mr

)

φ~k
(~r) = 0 (2.12)

normalized such that the completeness relation is
∫

d~k
(2π)3

φ~k
(~r)φ∗

~k
(~r′) = δ(~r − ~r′).

The final step is to reconstruct Aon−shell(~p, p′;P0) = lim~̃p→~p A(~̃p, p′;P0) on the mass-

shell, that is for p̃2

2mr
→ E = p2

2mr
i.e. p̃2 → P 2

0 − m2 = p2. We get

Aon−shell(~p, p′;P0) = lim
~̃p→~p

(
p̃2

2mr
− E)Ψ̃E(~̃p, p′) (2.13)

=
1

(2π)3
lim
~̃p→~p

(p̃2 − p2)

∫

d~k

(2π)3

[
∫

d~re−i~̃p·~rφ~k(~r)][
∫

d~r′φ∗
~k
(~r′)U0(~r

′)]

k2 − p2 − iǫ

We use the formula (see appendix B)

1

(2π)3
lim
~̃p−~p

(p̃2 − p2)

∫

d~re−i~̃p·~rφ~k
(~r)

k2 − p2 − iǫ
= δ(~p − ~k) (2.14)

Then the scattering amplitude A on shell including the Sommerfeld effect turns

out to be

Aon−shell(~p, p′;P0) =

∫

d~rφ∗
~p(~r)

∫

d~q

(2π)3
ei~q·~rA0(~q, p

′;P0) (2.15)

This result can be rewritten in a trasparent way as

Aon−shell(~p, p′;P0) =

∫

d~qφ̃∗
~p(~q) < ~q,−~q|M |p′ > (2.16)

where < ~q,−~q|M |p′ >= A0(~q, p
′) is the matrix element of the annihilation reaction, and

φ̃~p(~q) is the momentum-space wave function of the incoming pair, which takes into account

the mutual interaction, normalized such that in absence of interaction A = A0. (A for-

mula of that kind is heuristically presented in the Chapter 5 of the Peskin and Schroeder

book [11]. With our Feynmann graph convention the initial state appears to the left rather

than to the right).

Let us see how the above general formula works in two particular cases.

In the case in which A0 is S-wave dominated and then it is a constant, we have:

A0(~p, p′;P0) = a0 →

∫

d~q

(2π)3
ei~q·~rA0(~q, p

′;P0) = δ(~r)a0 (2.17)

– 6 –
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Therefore by eq. (2.15)

Aon−shell(~p, p′;P0) = φ∗
~p(0)a0 (2.18)

In the case A0(~q, p
′;P0) is P-wave dominated then it is linear in p

A0(~q, p
′;P0) = ~p · ~p′a1 →

∫

d~q

(2π)3
ei~q·~rA0(~q, p

′;P0) = −i~∂δ(~r) · ~p′a1 (2.19)

therefore by eq. (2.15)

Aon−shell(~p, p′;P0) = i~∂φ∗
~p(0) · ~p

′a1 (2.20)

To make explicit computations, one has to find φ around r = 0. In order to do that, it

is convenient first to specialize the general formula (2.15) for the case of a definite partial

wave l.

3 The enhancement formula for generic l-waves

The wave function φ~p(~r) can be decomposed in partial waves [9]:

φ~p(~r) =
(2π)3/2

4πp

∑

l

il(2l + 1)eiδlRp,l(r)Pl(p̂ · r̂) (3.1)

(p̂, r̂ are unit vectors in the direction of ~p,~r).

Rp,l(r) is the solution of the partial wave Schroedinger equation:

−
1

2mr

(

d2Rp,l

dr2
+

2

r

dRp,l

dr
−

l(l + 1)Rp,l

r2

)

−

(

p2

2mr
+

αe−µr

r

)

Rp,l = 0 (3.2)

normalized such that
∫ ∞

0
r2drRq,l(r)Rp,l(r) = δ(p − q) (3.3)

and the completeness is

∫ ∞

0
dpRp,l(r)Rp,l(r

′) =
1

r2
δ(r − r′) (3.4)

(This can be checked to be consistent with the normalization
∫

d~rφ∗
~p(~r)φ~k(~r) = (2π)3δ(~p−

~k) and with the completeness
∫

d3~kφ~k
(~r)φ̄~k

(~r′) = (2π)3δ3(~r − ~r′)). We have taken the

convention that Rp,l(r) is real, which we can always do.

For the free case φ0
~p(~r) = ei~p~r and R0

p,l(r) = limα→0 Rp,l(r).

We use the following identities [9]:

∫

dΩkPl(k̂ · r̂)Pl′(k̂ · r̂′) =
4π

2l + 1
δll′Pl(r̂ · r̂

′) (3.5)

∑

l

(2l + 1)Pl(r̂ · r̂′) = 2δ(1 − r̂ · r̂′) δ3(~r − ~r′) =
1

r2
δ(r − r′)

1

2π
δ(1 − r̂ · r̂′) (3.6)

Take forthe l wave: Al(~p, ~p′)=Al(p, p′)Pl(p̂ · p̂
′) and similarly A0,l(~q, ~p

′)=A0,l(q, p
′)Pl(q̂ ·p̂

′).

– 7 –
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Putting the expansion eq. (3.1) in the main formula eq. (2.15) and using eq. (3.5) to

do the angular integration, we get the partial wave version of eq. (2.15)

Al(p, p′) =
1

p

∫ ∞

0
r2drRp,l(r)

∫ ∞

0
qdqR0

q,l(r)A0,l(q, p
′) (3.7)

The standard dependence on small q is A0,l(q, p
′) = qla0,l(p

′). Since [9]

(
d

dr
)lR0

q,l(r)|r=0 =

√

2

π

l!

1 · 3 · · · (2l + 1)
ql+1 (3.8)

using the completeness eq. (3.4) for the free R0
q,l we get

∫

qdqR0
q,l(r)q

l a0,l(p
′) = (−)l

√

π

2

1 · 3 · · · (2l + 1)

l!

1

r2
δl(r) a0,l(p

′) (3.9)

In conclusion we get

Al(p, p′) = (−)l
√

π

2

1 · 3 · · · (2l + 1)

l!

1

p

∫

r2drRp,l(r)
1

r2
δl(r) a0,l(p

′) (3.10)

=

√

π

2

1 · 3 · · · (2l + 1)

l!

1

p

(

d

dr

)l

Rp,l(r)|r=0 a0,l(p
′) (3.11)

4 The enhancement for the case of a Coulomb potential

The Coulomb partial wave is [9], with our notation a := α/v (v relative CM velocity),

Rc
p,l(r) = p

√

√

√

√

2

π

l
∏

s=1

(s2 + a2)e
πa
2 Γ(1 − ia)

(2pr)le−ipr

(2l + 1)!
F (ia + l + 1, 2l + 2, 2ipr) (4.1)

It is easy to evaluate ( d
dr )lRc

p,l(r)|r=0 by using the explicit expression eq. (4.1) since for

r → 0 only the l-time derivative of the factor (2pr)l contributes and F (a, b, 2ipr)|r=0 = 1.

We get:1

Al(p, p′) =

√

√

√

√

l
∏

s=1

(s2 + a2)e
πa
2 Γ(1 − ia)

1 · 3 · · · (2l + 1)

(2l + 1)!
2l pla0,l(p

′)

=

√

∏l
s=1(s

2 + a2)e
πa
2 Γ(1 − ia)

l!
pla0,l(p

′) (4.2)

Since pla0,l(p
′) = A0,l(p, p′), and |Γ(1−i/pc)|

2 = πa
sinh(πa) by taking the square modulus

we get the enhancement formula σl = enhl · σ0,l where

enhl =

l
∏

s=1

(s2 + a2)eπa πa

sinh(πa)l!2
(4.3)

For large a = α/v, enhl = 2π
l!2 (α

v )2l+1.

1checking the normalization: for α→ 0 one gets Al(p, p′) = pla0,l(p
′)

– 8 –
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5 The enhancement for the case of a Yukawa potential

Here we take eq. (3.11) and insert for Rp,l(r) the solution of eq. (3.2), normalized as

eq. (3.3).

We know from textbooks (see for instance [9]) that this normalization corresponds to

the asymptotic behavior

Rp,l(r)r→∞
→

√

2

π

sin(pr − lπ
2 + δl)

r
(5.1)

Let us define x = pr and put Rp,l(r) = NpxlΦl(x); the equation for Φl is:

Φ′′
l +

2(l + 1)

x
Φ′

l +

(

2ae−bx

x
+ 1

)

Φl = 0 (5.2)

where again a := α/v, b := µ/(mrv) and v = p/mr is the relative velocity.

Suppose we solve this equation with the initial conditions

Φl(0) = 1 Φ′
l(0) = −a/(l + 1) (5.3)

(the condition for Φ′
l(0) is dictated by the equation for a regular solution). Then the

asymptotic behavior will be

xl+1Φl(x)x→∞ → C sin

(

x −
lπ

2
+ δl

)

(5.4)

In order to agree with the normalization of eq. (5.1) we have to put N =
√

2
π

1
C . Substituting

in eq. (3.11) we get

Al(p, p′) =
1 · 3 · · · (2l + 1)

C
pla0,l =

1 · 3 · · · (2l + 1)

C
A0,l(p, p′) (5.5)

In conclusion, by defining the Sommerfeld enhancement enhl for the l partial wave cross-

section (or equivalently for the rate) as

σl = enhl · σ0,l (5.6)

we get

enhl =

(

1 · 3 · · · (2l + 1)

C

)2

(5.7)

where C is obtained by looking at the asymptotic behavior eq. (5.4) of the solution of

eq. (5.2) with the initial conditions eq. (5.3). enhl depends on the two parameters a and

b. It is not necessary to determine δl.

Another equivalent strategy is to put Rp,l(r) = Npϕl(x)/x; the equation for ϕl is:

ϕ′′
l +

(

1 +
2a

x
e−bx −

l(l + 1)

x2

)

ϕl = 0 (5.8)

– 9 –
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Figure 1. F0(x)2 + F0(x − π/2)2 for α = 1/100, µ = 1Gev, m = 103Gev, v = 2 × 105

If one solves this equation with the initial conditions corresponding to

ϕl(x)x→0 → xl+1 (5.9)

then the asymptotic behavior will be

ϕl(x)x→∞ → C sin

(

x −
lπ

2
+ δl

)

(5.10)

with the same C of eq. (5.4) giving the enhancement as in eq. (5.7).

5.1 Computations for l = 1

In principle it is easy to get C: for instance one can use the NDSolve instruction of

Mathematica to get the numerical solution of eq. (5.2) with the initial conditions eq. (5.3),

or equivalently of eq. (5.8) with initial conditions eq. (5.9). In order to find C one takes

Fl(x) ≡ xl+1Φl(x) or else F (x) ≡ ϕ(x), and one plots Fl(x)2 + Fl(x − π/2)2 for large x:

when this is constant it is equal to C2. We follow the strategy of eqs. (5.8), (5.9), which

provides more clean numerical results.

It is expected that this procedure should work less well for b very low and a very large

because in this case the asymptotia is reached for very large x and the numerical solution

accumulates errors. However, for b = 0 and for any a we already have the exact result

derived analytically, eq. (4.3).

In practice, this works well for l = 0, see for instance figure 1.

For l = 1 the quantity Fl(x)2 + Fl(x − π/2)2 may sometimes continue to show de-

creasing oscillations: here it is convenient to take into account the sub-leading term in the

asymptotic expansion (5.10), which we know to be the free wave function up to the phase

shift δl. Therefore, the improved version of (5.10) for l = 1 is:

ϕ1(x)x→∞ → C ·

(

sin

(

x −
lπ

2
+ δl

)

+
cos(x − lπ

2 + δl)

x

)

(5.11)

To get C2, one defines, in three steps, with F1(x) := ϕ1(x),

k(x) :=
(π2 − 16x2)2

(8π(π2 − 16x2))
(F1(x + π/4)2 + F1(x − π/4)2),

h(x) := (π3 − 4πx2)(k(x + π/4) + k(x − π/4),

j(x) := −8
h(x + π/4) + h(x − π/4)

(π2 − 16x2)(3π2 + 16(1 + x2))
.

– 10 –



J
H
E
P
0
5
(
2
0
0
9
)
0
2
4

10 15 20 25 30 35 40

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

10 15 20 25 30 35 40

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Figure 2. F1(x)2 + F1(x − π/2)2 (left) and j(x) (right) for the same parameters of figure1
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Figure 3. enh1 as a function of m(Gev) for vsingle−particle = 10−3 blue, 10−4 red , 10−5 green.

Here α = 1/30, µ = 90Gev.

For x large (say x > 30), j(x) quickly converges to a constant which equals C2. (For l > 1

the free wave function is more complicated and one should do more steps). It must be said

that the results of the improved procedure differ little from what could be obtained simply

by finding by eye the average of the oscillations of Fl(x)2 + Fl(x − π/2)2, see figure 2.

The case of the S l = 0 wave has been discussed at length in the literature, and it has

been found a resonant pattern, see in particular refs. [6] and [8]. We have verified that we

get the same results.

Here we present some numerical result for the P l = 1 wave, which also shows a

resonant pattern.

In figure 3 we show the enhancement eq. (5.7) for l = 1, taking the values of the

parameters used in the numerical evaluations for the S wave in ref. [6] and also reported

in ref. [8], that is α = 1/30, µ = 90Gev, as a function of m (expressed in Gev) for

vsingle particle = 10−3, 10−4, 10−5.

In figure 4 we show the enhancement eq. (5.7) for l = 1, taking the values of the

parameters used in the numerical evaluations for the S wave in ref. [8] for the range of ref. [5],

that is α = 1/100, µ = 1Gev, as a function of m (expressed in Gev) for vsingle particle =

10−3, 10−4, 10−5.

– 11 –
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Figure 4. enh1 as a function of m(Gev) for vsingle−particle = 10−3 blue, 10−4 red , 10−5 green.

Here α = 1/100, µ = 1Gev.

A The singularities in q0 of the integrand at the r.h.s of eq. (2.2)

Consider the iteration of eq. (2.1). At the first order we put A0 in the place of A in the r.h.s.

Since p′ is not touched in the integral equation, we can directly take its mass-shell value:

p′0 = ω(p), ~p′ = ω(p)~n , ω(p) =
√

p2 + m2

(treating the final standard-model particles as massless).

The singularities of A0 come from the denominator of the propagator exchanged be-

tween the vertex χ(q1)a(p′1) and the vertex χ̄(q2)ā(p′2) (we take a massive propagator with

a mass m̂ of the order of -maybe equal to- m):

(q − p′)2 − m̂2 + iǫ = [q0 − (u(q, p) + ω(p)) + iǫ][q0 + (u(q, p) − ω(p)) − iǫ] (A.1)

where u(p, q) =
√

ω(p)2 + ω̂(q)2 − 2~q · ~nω(p) and ω̂(q) =
√

q2 + m̂2.

.

Therefore the integration over q0 in eq. (2.2) is (remember P0 = ω(p), ~P = 0)
∫

dq0N(q0, ~q, ~p) ×
1

[q0 − (ω(q) − ω(p)) + iǫ][q0 + (ω(q) + ω(p)) − iǫ]
× (A.2)

1

[q0 − (ω(q) + ω(p)) + iǫ][q0 + (ω(q) − ω(p)) − iǫ]
×

1

[q0 − (u(q, p) + ω(p)) + iǫ][q0 + (u(q, p) − ω(p)) − iǫ]

where N is some numerator, polynomial in q0. We do the integration on q0 in eq. (A.2)

by closing the contour in the lower half-plane.

The relevant poles are

(1) q0 = ω(q) − ω(p) (A.3)

(2) q0 = ω(q) + ω(p)

(3) q0 =
√

ω(p)2 + ω̂(q)2 − 2~q · ~nω(p) + ω(p)

– 12 –
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By computing the residue of the countour integration, it is seen that only the residue

of the pole (1) contains in the denominator the small factor ω(q)−ω(p) → 0 (for m → ∞),

providing the leading contribution in the non-relativistic limit. Therefore, in this limit it

is tantamount to do the contour integration disregarding the singularities of A0, that is of

A at the first order iteration.

This remains true for the next iterations since the instantaneous part of the VB prop-

agator (that is the step which is making the ladder) is q0 independent.

B Derivation of the formula eq. (2.14)

Eq. (2.12) can be recast as an integral equation (remembering our choice k2 − iǫ)

φ~k
(~r) = ei~k·~r + η~k

(~r) where η~k
(~r) =

1

−∂2 − k2 + iǫ
·
2mrαe−µr

r
φ~k

(~r) (B.1)

Therefore

1

(2π)3
lim
~̃p−~p

(p̃2 − p2)

∫

d~re−i~̃p·~rφ~k
(~r)

k2 − p2 − iǫ
= δ(~p − ~k) (B.2)

+
1

(2π)3
lim
~̃p−~p

(p̃2 − p2)

∫

d~re−i~̃p·~rη~k
(~r)

k2 − p2 − iǫ

The second term in the r.h.s. is zero because
R

d~re−i~p·~rη~k
(~r)

k2−p2−iǫ is finite (and also its integral

over ~k is finite). We limit ourselves to check the first order in perturbation theory:

η~k
(~r) =

1

−∂2 − k2 + iǫ
·
2mrαe−µr

r
ei~k·~r = 4π2mrα

∫

d~qei~q·~r 1

q2 − k2 + iǫ

1

(~q − ~k)2 + µ2

(B.3)

therefore
1

(2π)3

∫

d~re−i~p·~rη~k
(~r)

k2 − p2 − iǫ
= −

4π2mrα

(p2 − k2 + iǫ)2
1

(~p − ~k)2 + µ2
(B.4)

This is finite for generic p and k. Moreover its integral over ~k is also finite: by first doing

the angular integration we get

1

(2π)3

∫

d~k

∫

d~re−i~p·~rη~k(~r)

k2 − p2 − iǫ
= −

2π3mrα

p

∫ +∞

−∞

dkk
log (k+p)2+µ2

(k−p)2+µ2

(k2 − p2 − iǫ)2
(B.5)

This is seen to be finite by closing the contour in the upper plane, the singularities being

a double pole at k = p + iǫ and branch cuts at k = ±p + iµ.

Therefore there are no hidden δ functions:

∫

d~k
1

(2π)3
lim
~̃p−~p

(p̃2 − p2)

∫

d~re−i~̃p·~rη~k
(~r)

k2 − p2 − iǫ
= 0 (B.6)
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